首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25341篇
  免费   2718篇
  国内免费   1830篇
电工技术   1622篇
技术理论   2篇
综合类   1700篇
化学工业   6667篇
金属工艺   1758篇
机械仪表   1129篇
建筑科学   1093篇
矿业工程   543篇
能源动力   2387篇
轻工业   1431篇
水利工程   338篇
石油天然气   624篇
武器工业   68篇
无线电   2390篇
一般工业技术   4039篇
冶金工业   1065篇
原子能技术   1478篇
自动化技术   1555篇
  2024年   33篇
  2023年   464篇
  2022年   654篇
  2021年   838篇
  2020年   966篇
  2019年   946篇
  2018年   840篇
  2017年   959篇
  2016年   917篇
  2015年   857篇
  2014年   1343篇
  2013年   1449篇
  2012年   1772篇
  2011年   1917篇
  2010年   1409篇
  2009年   1463篇
  2008年   1308篇
  2007年   1648篇
  2006年   1429篇
  2005年   1289篇
  2004年   1188篇
  2003年   1017篇
  2002年   864篇
  2001年   719篇
  2000年   605篇
  1999年   449篇
  1998年   380篇
  1997年   309篇
  1996年   295篇
  1995年   257篇
  1994年   238篇
  1993年   176篇
  1992年   167篇
  1991年   135篇
  1990年   103篇
  1989年   81篇
  1988年   87篇
  1987年   66篇
  1986年   69篇
  1985年   48篇
  1984年   45篇
  1983年   24篇
  1982年   15篇
  1981年   11篇
  1980年   7篇
  1979年   3篇
  1978年   6篇
  1974年   5篇
  1959年   4篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
31.
Prognostics and health management of proton exchange membrane fuel cell (PEMFC) systems have driven increasing research attention in recent years as the durability of PEMFC stack remains as a technical barrier for its large-scale commercialization. To monitor the health state during PEMFC operation, digital twin (DT), as a smart manufacturing technique, is applied in this paper to establish an ensemble remaining useful life prediction system. A data-driven DT is constructed to integrate the physical knowledge of the system and a deep transfer learning model based on stacked denoising autoencoder is used to update the DT with online measurement. A case study with experimental PEMFC degradation data is presented where the proposed data-driven DT prognostics method has applied and reached a high prediction accuracy. Furthermore, the predicted results are proved to be less affected even with limited measurement data.  相似文献   
32.
Recent advances in three‐dimensional (3D) printing have enabled the fabrication of interesting structures which are not achievable using traditional fabrication approaches. The 3D printing of carbon microtube composite inks allows fabrication of conductive structures for practical applications in soft robotics and tissue engineering. However, it is challenging to achieve 3D printed structures from solution‐based composite inks, which requires an additional process to solidify the ink. Here, we introduce a wet 3D printing technique which uses a coagulation bath to fabricate carbon microtube composite structures. We show that through a facile nanogrooving approach which introduces cavitation and channels on carbon microtubes, enhanced interfacial interactions with a chitosan polymer matrix are achieved. Consequently, the mechanical properties of the 3D printed composites improve when nanogrooved carbon microtubes are used, compared to untreated microtubes. We show that by carefully controlling the coagulation bath, extrusion pressure, printing distance and printed line distance, we can 3D print composite lattices which are composed of well‐defined and separated printed lines. The conductive composite 3D structures with highly customised design presented in this work provide a suitable platform for applications ranging from soft robotics to smart tissue engineering scaffolds. © 2019 Society of Chemical Industry  相似文献   
33.
In this work, density functional theory (DFT) calculations were used to investigate the mechanism of carbon corrosion on nitrogen-doped carbon support. Free energy diagrams were generated based on three proposed reaction pathways to evaluate corrosion mechanisms. The most energetically preferred mechanism on nitrogen-doped carbon was determined. The results show that the step of water dissociation to form #OH was the rate-determining step for gra-G-1N (graphene doped with graphitic N) and pyrr-G-1N (graphene doped with pyrrolic N). As for graphene doped with pyridinic N, the step of C#OC#O formation was critical. It was found that the control of nitrogen concentration was necessary for precisely designing optimized carbon materials. Abundance of nitrogen moieties aggravated the carbon corrosion. When the high potential was applied, specific types of graphitic N and pyridinic N were found to be favorable carbon modifications to improve carbon corrosion resistance. Moreover, the solvent effect was also investigated. The results provide theoretical insights and design guidelines to improve corrosion resistance in carbon support through material modification by inhibiting the adsorption of surface oxides (OH, O, and OOH).  相似文献   
34.
Alkali metal ion substitution is an effective strategy to improve the luminescence properties of phosphors. In this work, a series of red-emitting phosphors Na1-xLix/2Kx/2La0.6Eu0.4MgWO6 were prepared by a traditional high-temperature solid-state reaction. Their phase structure, microstructure, luminescence properties and potential application in phosphor-converted white light-emitting diodes (pc-WLEDs) were investigated in detail. X-ray diffraction (XRD) result revealed the formation of a solid solution when x?≤?0.3, which kept monoclinic structure of NaLaMgWO6. Photoluminescence investigation indicated that the partial substitution of Li+/K+ ions for Na+ ions improved largely the red emission of Eu3+. Based on the optimized Na0.7Li0.15K0.15La0.6Eu0.4MgWO6 sample with relatively good thermal stability, a WLED device was fabricated by combining a near-ultraviolet (NUV) chip (~400?nm) with the phosphor mixture of commercial green/blue phosphors and the optimized red phosphor. The results indicated that the optimized red phosphor in this work could be a potential candidate for WLEDs pumped by NUV chips.  相似文献   
35.
Side-chain optimized poly (2,6-dimethyl-1,4-phenylene oxide)-g-poly (styrene sulfonic acid) (PPO-g-PSSA) is designed with balanced water-resistance and sulfonation degree. The PPO-g-PSSA is synthesized by controlled atom-transfer radical polymerization (ATRP) from brominated poly (2,6-dimethyl-1,4-phenylene oxide) (PPO-xBr) and ethyl styrene-4-sulfonate and followed by hydrolysis. A series of PPO-g-PSSA are prepared possessing different bromination degree (x) of PPO-xBr and polymerization degree (m) of the side-chains and the water-resistances of the fabricated membranes are investigated. The results show that a PPO-g-PSSA at relatively low x (x < 0.2) and high m (m > 4) exhibits good balance between the water-resistance and the sulfonation degree. Namely, it displays suitable proton conductivity with compromised water-resistance. Moreover, a maximum ion exchange capacity (IEC) of 3.24 mmol g?1 is reached without the sacrifice of water-resistance. In addition, PPO-g-0.08PSSA-13 and PPO-g-0.14PSSA-4 are chosen characterized by thermogravimetric analysis, proton conductivities and mechanical properties. At 90% RH, the optimized PPO-g-0.08PPSA-13 possesses a proton conductivity of 37.9 mS cm?1 at 40 °C and 45.5 mS cm?1 at 95 °C, respectively.  相似文献   
36.
Hydrothermally prepared zinc oxide nanorods are sulphonated (S–ZnO NR) and incorporated into 15% Sulphonated Poly (1,4-Phenylene Ether Ether Sulfone) (SPEES) to improve the hydrophilicity, water uptake and ion transfer capacity. Water uptake and ion transfer capacity increased to 34.6 ± 0.6% and 2.0 ± 0.05 meq g?1 from 29.8 ± 0.3% and 1.4 ± 0.04 meq g?1 by adding 7.5 wt% S–ZnO NR to SPEES. Morphological studies show the prepared S–ZnO NR is well dispersed in the polymer matrix. SPEES +7.5 wt% S–ZnO NR membrane exhibits optimum performance after three-weeks of continual operation in a fabricated microbial fuel cell (MFC) to produce a maximum power density of 142 ± 1.2 mW m?2 with a reduced biofilm compared to plain SPEES (59 ± 0.8 mW m?2), unsulphonated filler incorporated SPEES (SPEES + 7.5 wt% ZnO, 68 ± 1.1 mW m?2) and Nafion (130 ± 1.5 mW m?2) thereby suggesting its suitability as a sustainable and improved cation exchange membrane (CEM) for MFCs.  相似文献   
37.
Many places experience extreme temperatures below −30 °C, which is a great challenge for the fuel cell vehicle (FCV). The aim of this study is to optimize the strategy to achieve rapid cold start-up of the 30-cell stack at different temperature conditions. The test shows that the stack rapidly starts within 30 s at an ambient temperature of −20 °C. Turning on the coolant at −25 °C show stability of the cell voltage at both ends due to the end-plate heating, however, voltage of intermediate cells fluctuates sharply, and successful start-up is completed after 60 s. The cold start strategy changes to load-voltage cooperative control mode when the ambient temperature reduced to −30 °C, the voltage of multiple cells in the middle of the stack fluctuate more drastic, and start-up takes 113 s. The performance and consistency of the stack did not decay after 20 cold start-up experiments, which indicates that our control strategies effectively avoided irreversible damage to the stack caused by freeze-thaw process.  相似文献   
38.
该研究采用灰化预处理+离子色谱-电导法检测酱油中食盐的含量,并与莫尔法、电位滴定法进行比较。结果表明,莫尔法存在滴定过量问题,电位滴定法对温度等外界环境条件和仪器操作要求苛刻,而离子色谱-电导法具有操作简便快速并具有较好的准确度和精密度。实验结果表明,氯化钠含量处于11.56~11.61 g/100 mL之间,回收率实验结果为96.00%~102.10%,相对标准偏差为0.089%。干扰实验对结果无明显影响,且能同时测定多种离子,可用于成品酱油中氯化钠含量的检验。  相似文献   
39.
To improve the properties of diblock copolystyrene-based anion exchange membranes (AEMs), a series of AEMs with comb-shaped quaternary ammonium (QA) architecture (QA-PSm-b-PDVPPAn-xC where x denotes the number of carbon atoms in different alkyl tail chains and has values of 1, 4, 8, and 10 and C denotes carbon) were designed and synthesized via subsequent quaternization reactions with three different alkyl halogens (methyl iodide and N-alkane bromines (CH3[CH2] x-1Br where x = 4, 8, and 10). Compared with triblock analogues quaternized with methyl iodide in our previous research, QA-PSm-b-PDVPPAn-xC (x = 4, 8, and 10) AEMs are more flexible with the introduction of a long alkyl tail chain; this probably impedes crystallization of the rigid polystyrene-based main chain and induces sterically adjustable ionic association. An increase in the pendant alkyl tail chain length generally led to enhanced microphase separation of the obtained AEMs, and this was confirmed using small-angle X-ray scattering and atomic force microscopy. The highest conductivity (25.5 mS cm−1) was observed for QA-PS120-b-PDVPPA80-10C (IEC = 1.94 meq g–1) at 20 °C. Furthermore, the water uptake (<30%) and swelling ratio (<13.1%) of QA-PSm-b-PDVPPAn-xC AEMs are less than half of these corresponding values for their triblock counterparts. The QA-PS120-b-PDVPPA80-10C membrane retained a maximum stability that was as high as 86.8% of its initial conductivity after a 40-day test (10 M NaOH, 80 °C), and this was probably because of the steric shielding of the cationic domains that were surrounded by the longest alkyl tail chains. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47370.  相似文献   
40.
The thermal management of a proton exchange membrane fuel cell (PEMFC) is crucial for fuel cell vehicles. This paper presents a new simulation model for the water-cooled PEMFC stacks for automotive vehicles and cooling systems. The cooling system model considers both the cooling of the stack and cooling of the compressed air through the intercooler. Theoretical analysis was carried out to calculate the heat dissipation requirements for the cooling system. The case study results show that more than 99.0% of heat dissipation requirement is for thermal management of the PEMFC stack; more than 98.5% of cooling water will be distributed to the stack cooling loop. It is also demonstrated that controlling cooling water flow rate and stack inlet cooling water temperature could effectively satisfy thermal management constraints. These thermal management constraints are differences in stack inlet and outlet cooling water temperature, stack temperature, fan power consumption, and pump power consumption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号